Skip to main content

Different Types of Spanning Tree Protocols, Defined Briefly

802.1D and its successor protocols provide loop resolution by managing the physical paths to given network segments. STP enables physical path redundancy while preventing the undesirable effects of active loops in the network.
The first STP, called the DEC STP, was invented in 1985 by Radia Perlman at the Digital Equipment Corporation. In 1990, the IEEE published the first standard for the protocol as 802.1D based on the algorithm designed by Perlman. Subsequent versions were published in 1998 and 2004 incorporating various extensions.There are several varieties of STP:

Common Spanning Tree (CST) assumes one 802.1D spanning-tree instance for the entire bridged network, regardless of the number of VLANs. Because there is only one instance, the CPU and memory requirements for this version are lower than the others. However, because there is only one instance, there is only one root bridge and one tree. This means that traffic for all VLANs flows over the same path. This can lead to sub optimal traffic flows. Also the network is slow in converging after topology changes due to inherent 802.1D timing mechanisms.

Per VLAN Spanning Tree Plus (PVST+) is a Cisco enhancement of STP that provides a separate 802.1D spanning-tree instance for each VLAN configured in the network. The separate instance supports enhancement such as PortFast, BPDU guard, BPDU filter, root guard, and loop guard. Creating an instance for each VLAN increases the CPU and memory requirements but allows for per-VLAN root bridges. This allows the STP tree to be optimized for the traffic of each VLAN. Convergence of this version is similar to 802.1D; however, convergence is per-VLAN.

Rapid STP (RSTP), or IEEE 802.1w, is an evolution of STP that provides faster convergence of STP. This version addresses many of the convergence issues, but because it still had a single instance of STP, it did not address the sub optimal traffic flow issues. To support that faster convergence, the CPU usage and memory requirements of this version are slightly more than CST but less than PVRST+.

Multiple Spanning Tree (MST) is an IEEE standard inspired from the earlier Cisco proprietary Multi-Instance Spanning Tree Protocol (MISTP) implementation. To reduce the number of required STP instances, MST maps multiple VLANs that have the same traffic flow requirements into the same spanning-tree instance. The Cisco implementation provides up to 16 instances of RSTP (802.1w) and combines many VLANs with the same physical and logical topology into a common RSTP instance. Each instance supports PortFast, BPDU guard, BPDU filter, root guard, and loop guard. The CPU and memory requirements of this version are less than PVRST+ but more than RSTP.

PVRST+ is a Cisco enhancement of RSTP that is similar to PVST+. It provides a separate instance of 802.1w per VLAN. The separate instance supports PortFast, BPDU guard, BPDU filter, root guard, and loop guard. This version addressed both the convergence issues and the sub optimal traffic flow issues. To do this, this version has the largest CPU and memory requirements. The RSTP algorithm is far superior to 802.1D STP and even PVST+ from a convergence perspective. It greatly improves the restoration times for any VLAN that requires a topology convergence due to link up, and it greatly improves the convergence time over BackboneFast for any indirect link failures.


Popular posts from this blog

What is Cisco Supervisor Engine?

Supervisor Engine is a module that is installed in the Cisco Chassis-based Catalyst Switches or Routers. Supervisor engine contains nearly all the same components of a fixed Cisco Switches or Routers. These Supervisor engines come in a variety of different types with different functionalities and are installed in the Switches/Router Chassis as per requirements of the network types.

Benefits of Supervisor Engines
By installing Latest Supervisor Engines in your existing investments (Switches and Routers) you can scale system performance and integrate next-generation services into your Networks.
Within a single multilayer switch chassis, two supervisor modules with integrated route processors can be used to provide hardware redundancy. If an entire supervisor module fails, the other module can pick up the pieces and continue operating the switch.
The supervisor engine contains the following integrated daughter cards that perform forwarding and routing and provide the protocols supported …

GNS3 Docker Error while creating node: Docker has returned an error: Cannot connect to host docker:80

Error while creating node: Docker has returned an error: Cannot connect to host docker:80 ssl:False [No such file or directory]

After adding docker template for Alpine Linux in gns3, you get above mentioned message when you want to use alpine linux in GNS3.

To get rid of this message you have to install Docker by following below link
curl -fsSL | sh

If you do not have curl installed then instal curl first with below command.apt-get install curl
After installing Docker you need to add your user name in the docker group with the following command. $ sudo usermod -aG docker your_username

Verify if the docker service is started with following command$ service docker status
If docker is not started then start with following command $ sudo service docker start
Logout from GNS3 Virtual Machines and log back. Start gns3 and use alpine linux.

Telnet Client is Disabled Enable it to use it from this application

This is a Cisco Network Assistant (CNA) error when you want to telnet any Cisco Devices from within CNA.
Solution to remove this error is related to Windows 7 or Windows Vista. First of all you need to Add TELNET program from Control Panel, which by Default is not added in fresh installation of Windows 7.For adding and using Telnet Program in Windows 7, Click Start > Control Panel > Uninstall a Program > Turn Windows Features On and OFF > Scroll to TELNET and Select it > Press OK After Adding Telnet Program into the Windows 7 you need to Copy Telent.exe from C:\Windows\System32 folder and paste it to C:\Windows\SysWOW64\ Now you should not get the same error.