Skip to main content

OSPF Adjacency Stuck in EXSTART on Cisco IOS XR – Issue and Solution

In a recent lab setup using Cisco IOS XR on EVE-NG, I faced a common but frustrating issue with OSPF adjacencies getting stuck in the EXSTART state. After spending considerable time troubleshooting interface MTUs and configurations, I discovered that the root cause was related to the virtual network interface type being used. This post outlines the issue, troubleshooting steps, and the eventual solution that got everything working.


Issue:

While configuring OSPF between two routers running Cisco IOS XR in my lab, OSPF adjacencies were getting stuck in the EXSTART state. I verified that interface configurations, MTU settings, and OSPF parameters were correct, but the problem persisted. I tried adjusting the MTU size, using the mtu-ignore command, and even checked for ACLs, but nothing seemed to resolve the issue.


Troubleshooting Steps:

  1. MTU Settings: I started by verifying that both sides of the OSPF adjacency had matching MTUs. I used the default MTU and even tried different values with mtu-ignore, but the issue remained.

  2. OSPF Configuration: I ensured that the OSPF network type was set to point-to-point and double-checked the OSPF process configurations, but still no luck.

  3. Logs & Debugs: I ran debug ip ospf to trace the OSPF process, which consistently showed that the neighbor was stuck in EXSTART due to DBD retransmissions.

  4. Interface Type: Finally, I looked into the type of virtual network interface being used in the EVE-NG topology. By default, the interfaces were set to virtio-net-pc, which I suspected could be causing some compatibility issues with Cisco IOS XR.


Solution:

After several hours of troubleshooting, the breakthrough came from changing the interface type in EVE-NG. I switched the interfaces from virtio-net-pc to e1000, which is widely supported and stable. Once the change was made, the OSPF adjacency came up immediately, and everything worked as expected.


Conclusion:

This issue highlights the importance of considering all aspects of virtual environments, including the type of interfaces in use. If you're using Cisco IOS XR in EVE-NG and facing similar OSPF adjacency issues, make sure to check the interface type and switch to e1000. This simple change saved me a lot of time and solved the problem instantly.

Key Takeaway: Always consider the interface type when working with virtual labs in EVE-NG, especially with Cisco IOS XR. It might save you hours of troubleshooting!

Comments

Popular posts from this blog

How to import Putty Saved Connections to mRemoteNG

Just started using mRemoteNG and its being very cool to connect to different remote connection with different protocols e.g Window Remote Desktop, VNC to Linux, SSH, HTTP connection etc. from a single application. As new user I configured some remote desktop connection which was quite easy to figure out. But when I wanted to add SSH connections, it came in my mind to import all of the saved connections in the putty. But I couldn't figure it out how can it be done, though it was quite easy and here are the steps. Open your mRemoteNG Create a folder if you want segregation of multiple networks Create a new connection Enter the IP address of remote server under connection in Config pane Under the config pane, select protocol " SSH version 2 ".  Once you select protocol to SSH version 2 you are given option to import putty sessions, as shown in the snap below. In the above snap, I have imported CSR-AWS session from my saved sessions in Putty.

BGP Local Preference Controlling Outbound Traffic in BGP

In BGP, Local Preference is used to control the outbound traffic path. It helps you decide which egress point (exit point) should be used when you have multiple connections to external networks, such as ISPs. Local Preference is an attribute that is local to your AS and is shared with all iBGP peers but not with eBGP neighbors. Higher Local Preference = More preferred outbound path. Example Scenario : You have two external links: ISP1 (via CE1) and ISP2 (via CE2). You want traffic to prefer ISP1 for all outbound traffic. Network Topology : CE1 (connected to ISP1): 10.0.1.1/30 CE2 (connected to ISP2): 10.0.2.1/30 iBGP Router (Internal) connected to both CE1 (10.0.1.2/30) and CE2 (10.0.2.2/30). Configuration on CE1 (Higher Local Preference) : Create a route map to set the local preference to 200 for routes learned from CE1: route-map SET_LOCAL_PREF permit 10 set local-preference 200 In the BGP configuration for CE1, apply this route map to the neighbor: router bgp 65001 ne...

BGP MED: Managing Inbound Traffic with Multi-Exit Discriminator

The Multi-Exit Discriminator (MED) is used in BGP to control inbound traffic into your AS. It tells a neighboring AS which entry point into your network it should prefer when there are multiple links between your AS and the neighboring AS. The lower the MED value , the more preferred the path. MED is only honored between the same neighboring AS . Example Scenario : You are connected to ISP1 via two routers, CE1 and CE2 , and want to control which router ISP1 uses to send traffic into your AS. Network Topology : CE1 (connected to ISP1): 10.0.1.1/30 CE2 (connected to ISP1): 10.0.2.1/30 iBGP Router (Internal) connected to both CE1 (10.0.1.2/30) and CE2 (10.0.2.2/30). Configuration on CE1 (Lower MED, More Preferred) : Create a route map to set the MED to 50 for CE1: route-map SET_MED permit 10 set metric 50 Apply this route map to the neighbor in the BGP configuration for CE1: router bgp 65001 neighbor 10.0.1.1 remote-as 65000 neighbor 10.0.1.1 route-map SET_MED out Configuratio...